Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(17): 9197-9204, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38639710

RESUMEN

Waterborne coatings with intrinsic antibacterial attributes have attracted significant attention due to their potential in mitigating microbial contamination while simultaneously addressing the environmental drawbacks of their solvent-based counterparts. Typically, antimicrobial coatings are designed to resist and eliminate microbial threats, encompassing challenges such as biofilm formation, fungal contamination, and proliferation of black mold. Iodine, when solubilized using ethylene glycol and incorporated as a complex into waterborne latex dispersions, has shown remarkable antimicrobial activity. Here, we demonstrate the effect of the film formation process of these iodinated latex dispersions on their antimicrobial properties. The effect of iodine on the surface morphology and mechanical, adhesion, and antimicrobial properties of the generated films was investigated. Complete integration and uniform distribution of iodine in the films were confirmed through UV-vis spectrophotometry and a laser Raman imaging system (LRIS). In terms of properties, iodinated films showed improved mechanical strength and adhesion compared with blank films. Further, the presence of iodine rendered the films rougher, making them susceptible to bacterial adhesion, but interestingly provided enhanced antibiofilm activity. Moreover, thicker films had a lower surface roughness and reduced biofilm growth. These observations are elucidated through the complex interplay among film thickness, surface morphology, and iodine properties. The insights into the interlink between the film formation process and antimicrobial properties of iodinated latex dispersions will facilitate their enhanced application as sustainable alternatives to solvent-based coatings.


Asunto(s)
Biopelículas , Yodo , Látex , Látex/química , Látex/farmacología , Yodo/química , Yodo/farmacología , Biopelículas/efectos de los fármacos , Propiedades de Superficie , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Halogenación
2.
Langmuir ; 40(1): 871-881, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38131278

RESUMEN

Development of spatially organized structures and understanding their role in controlling kinetics of multistep chemical reactions are essential for the successful design of efficient systems and devices. While studies that showcase different types of methodologies for the spatial organization of various colloidal systems are known, design and development of well-defined hierarchical assemblies of liquid-crystal (LC) droplets and subsequent demonstration of biological reactions using such assemblies still remain elusive. Here, we show reversible and reconfigurable one-dimensional (1D) assemblies of protein-bioconjugate-sequestered monodisperse LC droplets by combining microfluidics with noninvasive acoustic wave trapping technology. Tunable spatial geometries and lattice dimensions can be achieved in an aqueous medium comprising ≈19 or 62 µm LC droplets. Different assemblies of a mixed population of larger and smaller droplets sequestered with glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively, exhibit spatially localized enzyme kinetics with higher initial rates of reaction compared with GOx/HRP cascades implemented in the absence of an acoustic field. This can be attributed to the direct substrate transfer/channeling between the two complementary enzymes in close proximity. Therefore, our study provides an initial step toward the fabrication of LC-based devices for biosensing applications.


Asunto(s)
Glucosa Oxidasa , Cristales Líquidos , Peroxidasa de Rábano Silvestre/química , Glucosa Oxidasa/química , Microfluídica , Cristales Líquidos/química , Enzimas Inmovilizadas/química , Sonido
3.
ACS Appl Bio Mater ; 6(3): 1092-1104, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36780700

RESUMEN

The rapid increase in multidrug resistant biofilm infections is a major concern for global health. A highly effective therapy is required for the treatment of biofilm related infections. In this study, curcumin loaded alginate microfibers were generated by using the microfluidic technique. In this strategy, alginate microfibers are used as a carrier for the encapsulation of curcumin and then are irradiated with blue light to assess the efficacy of a combined therapy (blue light + curcumin) against drug resistant Staphylococcus aureus (S. aureus). The advantage of utilizing photodynamic therapy (PDT) is the usage of a non-antibiotic mode to inactivate bacterial cells. In the presence of blue light, the curcumin loaded alginate microfibers have shown good eradication activity against biofilms formed by multidrug resistant S. aureus. We achieved different diameters of curcumin loaded alginate microfibers through manipulation of flow rates. The curcumin loaded microfibers were characterized for their size, morphology, and curcumin encapsulation. Further, the efficacy of these microfibers in the presence of blue light has been evaluated against biofilm forming S. aureus (NCIM 5718) through optical and electron microscopy. This study employs microfluidic techniques to obtain an efficacious and cost-effective microfibrous scaffold for controlled release of curcumin to treat biofilms in the presence of blue light.


Asunto(s)
Curcumina , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Curcumina/farmacología , Microfluídica , Fotoquimioterapia/métodos , Biopelículas , Infecciones Estafilocócicas/tratamiento farmacológico
4.
Colloids Surf B Biointerfaces ; 208: 112065, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34478958

RESUMEN

Microfluidics based techniques for generation of cell-laden microbeads are emerging as an attractive route to 3D cell encapsulation due to the precise control provided by microfluidics. However, existing microfluidics based cell encapsulation methods are restricted to 2D planar devices and use of passive methods for droplet generation. In this work, we report the development of a 3D glass-PDMS (polydimethylsiloxane) hybrid device for complete on-chip generation of cell-laden alginate beads in the presence of electric fields. The 3D hybrid device allows application of electric fields for active control of droplet (sodium alginate) size without the need for electrode patterning or liquid electrodes. Chemical gelation is achieved through on-chip coalescence of sodium alginate droplets and calcium chloride plugs, generated using coflow and T-junction geometries respectively. Using this approach, we successfully encapsulate E. coli cells (with viability ∼90 %) into alginate microbeads and perform comprehensive spatio-temporal growth and viability studies. The active control of droplet size coupled with complete on-chip gelation demonstrated here is a promising technology for cell encapsulation with applications such as cell therapy, organ repair, biocatalysis, and microbial fuel cells.


Asunto(s)
Escherichia coli , Microfluídica , Alginatos , Encapsulación Celular , Microesferas
5.
Langmuir ; 36(5): 1227-1234, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31957454

RESUMEN

In this work, we present a microfluidics-based microfiber fabrication method with the ability to control both the fiber size and the extent of coiling of the generated fiber. This latter feature allows on-demand generation of both nonwoven and single fiber within the same device, broadening the scope of application of the fabricated fibers. Using a hybrid poly(dimethylsiloxane) (PDMS)-glass microfluidic device, we implement a coflowing solvent removal technique to generate poly(ethylene oxide) (PEO) fibers. Characterization of fibers by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) confirms the production of solvent-free, pure PEO fibers. Control over fiber size using both inner and outer liquid flow rates is demonstrated by scanning electron microscopy (SEM) imaging. More crucially, we employ a complementary flow toward the downstream end of the fiber solidification region to control the extent of coiling of the generated fiber. By simple variation of the complementary flow, we induce a transition from a nonwoven fiber to a single fiber. The presented technique is expected to broaden the scope of microfluidics as a tool for the continuous generation of microfibers with a wider range of applications than the existing microfluidics techniques.

6.
J Colloid Interface Sci ; 507: 27-34, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28780332

RESUMEN

In this work, we present a robust microfluidic platform for controlled and complete on-chip generation of alginate microcapsules with single and double liquid cores. A combined Coflow and T-junction configuration implemented in a hybrid glass-PDMS (Polydimethylsiloxane) device is used for the generation of microcapsules with oil as liquid core. Frequency matching of oil-alginate double emulsion generation with that of aqueous Calcium chloride droplet generation allows for controlled merging of the two, resulting in reliable production of microcapsules. Confocal imaging of microcapsule cross-section reveals presence of intact liquid core. In the case of double core microcapsules, the two cores are well separated by alginate layer ensuring their long term stability. The current approach is expected to have advantages over existing techniques for liquid core microcapsule generation in terms of continuity of the process, control over core stability, and non-damage to cells when used for cell encapsulation applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...